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ABSTRACT 
 
 
 

Many 3D training simulations employ static, and to some extent, simplistic 

natural phenomena representation that often leaves much to be desired. Taking advantage 

of the latest advancements in computer graphics hardware allows modeling dynamic 

natural phenomena such as clouds. Specifically, utilizing procedural techniques and high-

level shading languages, it is possible to produce considerably more realistic simulations. 

This thesis designed and implemented a visual simulation component, which renders 

convincing clouds using procedural noise-based texture mapping techniques. Both 

traditional rendering and shader-enabled rendering supported by the OpenGL Shading 

Language are utilized. This component has been included in the Delta3d simulation 

engine and is used to create convincing clouds in outdoor simulations while the 

performance penalty imposed is considered acceptable. Custom tools have been 

developed for easy noise texture parameterization and cross-platform compatibility has 

been demonstrated. 
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I. INTRODUCTION  

A. PROBLEM STATEMENT  
The technological achievements in the computer hardware field during recent 

years have been astounding. Visual simulations are taking advantage of new features and 

capabilities of graphics hardware, thus taking the degree of realism and visual fidelity to 

higher levels. One of the fields still experiencing major research is the simulation of 

natural phenomena. These are essential in presenting outdoor scenes where the user or 

trainee must be fully immersed in the environment. Additionally, many training 

applications must provide the trainee with cues such as wind direction and shadows in 

order to prevent negative transfer of training. Albeit, nature is unpredictable and does not 

follow a definite set of rules that can be modeled easily with computer algorithms and 

logic. That being the case, developing a precise visual model of a single natural 

phenomenon is feasible under a large number of assumptions, but generally, the 

computation and rendering process will consume so many CPU (or GPU) cycles that it 

cannot be executed at interactive rates.  

For this reason, many visual simulations of outdoor scenes use procedural 

texturing techniques to catch the irregularities and randomness found in nature. 

Requirements for creating textures programmatically are parameterization and the 

property of being repeatable without any noticeable seams when these textures are tiled. 

These procedural generated textures can be used by either traditional rendering 

applications or applications using the new programmable features of graphics hardware. 

The research areas of this thesis are 

• The creation of procedural 2D and 3D noise-based textures 

• Cloud visual simulation through the use of regular texture mapping 
technique and a GPU shader-enabled updateable texture technique 

• Integrating this cloud simulation into an open source 3D visual simulation 
and game engine 
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B. RESEARCH QUESTIONS  

Clouds are an important element of the visual simulation of any outdoor scene 

and their inclusion augments the realism and visual appeal of the simulation. Clouds are 

rarely examined closely in life. They are just part of the environment and expected to be 

there. The goal is to integrate convincing procedural clouds in an outdoor simulation. 

The research questions that need to be answered are the following: 

• How can noise-based procedural textures be created? Which pixel format 
will be used? In which file format will it be stored? 

• How can cloud-like textures be created out of plain noise-based textures? 

• How it is possible for the process to be parameterized in order to easily 
create many different textures? 

• Is there a minimum requirement for graphics cards in order to support the 
shader-enabled technique? 

• Which shading language should be used to implement the shaders? 

• What are the restrictions in the simulation? 

• How is it to be integrated with Delta3D simulation engine? 

• Is it possible for the simulation to be executed in many platforms? 

• What is the performance penalty introduced?  Is the framerate drop 
significant? 

• When is it appropriate to use this simulation? 

 2



II. BACKGROUND 

A. GRAPHICS HARDWARE 

1. Evolution 
Computer graphics hardware has evolved dramatically during the past five years. 

It has advanced from the graphics accelerators of PCs and workstations, which simply 

were giving a performance boost, to the Graphics Processor Unit (GPU), which is 

capable of supporting complex, user-programmable shading programs with high 

performance. 

The driving forces behind this progress are undoubtedly the vast amount of 

computation needed to simulate the world along with the human desire to be visually 

stimulated and entertained. Aided by the semiconductor industry, which has committed 

itself to doubling the number of transistors that fit on a microchip every 18 months 

(Moore’s Law), GPUs have been highly specialized and not only has performance 

increased greatly, but the quality of computation and the flexibility of graphics 

programming have also steadily improved. 

2. Programmable Hardware 
Until recently, the limited functionality of the fixed graphics pipeline restricted 

developers in what they could create in real-time. This generally resulted in synthetic-

looking real-time graphics. However, the world is comprised of very complex materials 

and lighting effects, so real-time graphics hardware had to support shading models other 

than the fixed pipeline provided. This was possible by making certain stages in the 

sequence of the pipeline programmable and by providing support from the two graphics 

rendering APIs, DirectX and OpenGL, which exposed these new hardware capabilities to 

the end-user. The developer now can program the vertex and fragment processor within 

the GPU bypassing the fixed pipeline and create realistic graphics using consumer video 

cards. For visual simulation applications specifically, real-time programmable shading 

enables superior visual realism. 
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3. Future Trends 

The latest graphics cards augment the programmability of the hardware adding 

features such as the ability to read texture memory in vertex programs and branching in 

fragment programs. Future graphics cards will likely further expand hardware 

programming capabilities along with increased performance and flexibility. Support for 

algorithms such as noise evaluation functions and global illumination have been 

announced for the graphics hardware. 

Additionally, NVIDIA has announced (July 2004) its SLI (Scalable Link 

Interface) multi-GPU architecture. This technology promises to take advantage of the 

increased bandwidth of the PCI Express bus architecture and allow multiple GPUs to 

work efficiently in parallel in a single system.  

B. HIGH-LEVEL SHADING LANGUAGES 
The first high-level shading language to become the industry standard for offline 

rendering systems was PIXAR’s RenderMan Shading Language in 1988. Such languages 

are using the CPU for rendering and are non-interactive but they greatly influence the 

invention of real-time high-level shading languages. 

Most graphics hardware and APIs support programming the GPU with low-level 

programming interfaces, usually at the assembly language level. Unfortunately, it is 

rather difficult and often unproductive to program in assembly language. Thus, it was 

necessary to create high-level shading languages. These high-level languages would offer 

advantages such as hardware abstraction and faster compiler-optimized output code. 

Real-time high-level shading languages have leveraged the accumulated 

knowledge and shader techniques of offline languages and further provided true 

interactivity (change of viewpoint) and performance. Also, they have potentially better 

performance than assembly programming because shaders are optimized by the compiler. 

Currently, there are three main rivals in the field of shading languages: 

• NVIDIA's Cg 

• Microsoft's HLSL 

• OpenGL Shading Language (GLSL) 
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Cg and HLSL have essentially the same syntax and capabilities because NVIDIA 

and Microsoft collaborated in their creation. The main goal is to compare these two with 

GLSL and decide which will have greater developer acceptance, performance and 

integration in applications and graphics APIs. This was a turning point for this thesis 

because these languages evolve radically and it is difficult to predict their future. 

A key difference between GLSL and the other languages is that GLSL is part of 

the OpenGL 1.5 API specification and does not need any other translation between the 

application, the shader source code and the API calls. Of course, if one uses the other 

competing API (DirectX), this is not a problem. In general, all high-level languages 

compile or translate C-like source to machine code to be executed in the appropriate API.  

C. PROCEDURAL TEXTURING 

1. Introduction 
There have been two recent important developments for real-time procedural 

texturing techniques: increased CPU power and programmable graphics hardware 

(GPUs), which are available on commodity PCs. This has allowed graphics developers to 

create interactive complex procedural effects. 

One of the most important features of procedural texturing is abstraction. In a 

procedural approach, rather than explicitly specifying the texture that will be applied to 

the scene models, they are abstracted into a function or an algorithm (i.e., a procedure) 

and evaluate this procedure when needed. Other advantages of procedural texturing are: 

• Parametric control makes it possible to create variations of the same 
theme easily 

• Variable resolution offers “infinite” detail, limited only by precision 

• Procedural textures can cover arbitrarily large areas, with no repeating 

• Solid texturing – not limited by texture mapping coordinates because 
evaluated textures adapt to arbitrary geometry 

• It is only code - it requires minimal memory storage compared to textures   

The most significant drawback of procedural texturing, at least currently, is that it 

requires many computation cycles, so that it is difficult to compute textures, especially  
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large 3D textures, in the GPU at interactive rates. Therefore, the textures are usually 

precomputed on the CPU and passed onto the GPU. Hopefully, this disadvantage will 

vanish when newer and faster GPUs are developed. 

One other difficulty presented to the developer of procedural textures is that this 

is a highly iterative process, and writing and debugging such code is not always intuitive. 

Given too little parameterization, it is not possible to create what was envisioned. Given 

too much, and it is possible to become mired in thousands of iterations.  

2. Noise 
What makes natural phenomena and objects unique in their appearance is their 

apparent randomness. Various noise functions are used to simulate that and other 

phenomena in procedural texturing. They replace or modulate repeating textures with 

procedural ones adding controlled randomness to them. The first implementation of a 

noise function for procedural texturing was done by Ken Perlin [3], for which he also 

received an Academy award. Since then, this function has provided inspiration, and 

numerous variations of value, lattice, gradient, and fractals have been presented. Figure 1 

presents two examples of 1D noise functions. Noise functions have been widely used in 

the film industry, commercials, and computer graphics for many years. 

 

 
Figure 1.   1D Noise Functions 
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The ideal noise function characteristics are: 

• Repeatable pseudorandom values 

• Specific range  (typically [-1,1] or [0,1]) 

• No repeating patterns 

• Invariance under rotation and translation 

3. Solid Noise Textures 
Building a 3D noise texture, also called solid texture or volume texture, requires 

generating the 2D texture slices that will be stacked together. OpenGL 1.3 and later 

drivers, natively support 3D textures, while other earlier drivers optionally support them 

through extensions. To ensure 3D texture will be continuous in space these 2D textures 

slices must be tileable in both the x and y axes.  

Another issue is that 3D textures quickly become very large with increased 

resolution. In other words, a 128x128x128 RGBA texture occupies 1283x4 bytes = 8Mb 

of memory, which eventually will be loaded into the graphics card. A 256x256x256 

RGBA texture occupies 256 Mb, which most current cards simply do not have. 

Thus, it is necessary to select a smaller resolution, and at the same time, take steps 

to ensure that the visual appeal of the texture is acceptable. Filtering (tri-linear, cubic 

filtering), texture compression and noise function optimizations are some tools that exist 

for this function, undoubtedly with some trade-offs, as far as performance is concerned. 

4. Natural Phenomena 
Procedural texturing can mimic statistical properties of natural textures and can be 

used in many applications for the simulation of natural phenomena and effects such as 

clouds, gases, smoke, water, and terrain. Many of these simulations follow purely 

empirical approaches that make everything look convincing, but have nothing to do with 

physics and material properties. The world is far too computationally complex to model 

every aspect with fine detail.  Nevertheless, there have been some physical-based 

simulations ([2][10]), which use simplified mathematical models that are both 

computationally tractable and aesthetically pleasing.  
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D. SCENE GRAPHS 

1. Introduction 
A scene graph is a hierarchically arranged data structure that encapsulates and 

describes the 3D world of a simulation: 3D models, lights, cameras, and actions. It is a 

directional, acyclic graph (DAG) or more commonly, a tree. Its structure determines the 

order of operation of its data and different node types provide mechanisms for grouping, 

animation, level of detail, and other concepts that are applied when the scene graph is 

traversed.  

 

 
Figure 2.   Scene Graph Structure 

 

A primary role of a scene graph is to improve performance through culling, state 

sorting and various other methods, which reduce the load on the graphics rendering 

engine, allowing complex scenes to be rendered faster. 

2. OpenSceneGraph  
OpenSceneGraph (OSG) is a multi-platform open source graphics toolkit for the 

development of graphics applications such as flight simulators, games, virtual 

environments or scientific visualization. Written entirely in Standard C++ and OpenGL, 

it makes use of the Standard Template Library (STL) and Design Patterns, and leverages 

the open source development model to provide a library that keeps pace with the graphics 

hardware evolution. 

The Delta3D simulation engine being developed in the MOVES Institute of the 

Naval Postgraduate School has chosen OSG as the framework upon which to be built and 

extend its functionality. Delta3D’s goal is to be used for simulations, military training 
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applications, games, or other graphical applications. It provides a high-level API while 

still allowing the end-user optional, low-level functionality. Additionally, it is based 

completely on open source software so it is both flexible and expandable in response to 

future needs. 
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III. CLOUD SIMULATION DESIGN 

A. INTRODUCTION 

1. Purpose 
The purpose of this thesis was to research real-time natural phenomena 

simulation, more specifically cloud simulation, in virtual environments applications, and 

possible uses of GPU programming techniques. The developed libraries were included in 

the simulation engine Delta3D (former P51), an ongoing project currently sponsored by 

N6M (U.S. Navy Modeling and Simulation Management Office). 

2. Overview 
The initial thought was to divide the research for cloud simulation into three 

topics using both traditional rendering techniques through the fixed pipeline and 

programmable graphics hardware: 

• Traditional textured-mapped cloud planes (rectangles) with run-time 
procedural static textures above the 3d world  

• Dome-shaped (hemispherical structure) cloud surface around the 3d world 
rendered with direct manipulation of a run-time or pre-computed 
procedural volume texture in the GPU. Texture is updateable through 
vertex and fragment shaders 

• Volumetric clouds using techniques of implicit surface modeling [2] and 
volume rendering with programmable graphics hardware 

The first two approaches have been designed, tested and developed. The third 

approach, after conducting some preliminary research on the methods of implicit 

modeling (blobs, isosurfaces) and volumetric rendering with shaders, was considered 

unfeasible to be attacked in the timeframe required. Nevertheless, this method should be 

used in visual simulations when the viewpoint is not consistently near ground level, as 

with a flight simulator. 

The three main classes from this research, NoiseGenerator, CloudPlane and 

CloudDome, have been developed as a part of a Delta3D simulation engine, but with 

minor changes, they can be used from whichever application or simulation uses the 

OpenSceneGraph framework. 
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3. Tools 

Standard C++ language and Microsoft Visual Studio .NET 2003 as the IDE were 

used to develop the libraries. The API of choice was OpenGL 1.5, and the graphics 

library used was OpenSceneGraph. The OpenGL Shading Language and ATI’s shader 

IDE RenderMonkey 1.5 (with GLSL support) was used as a shading language to develop, 

preview and tweak the shaders. Additional tools were Microsoft’s DirectX Texture Tool 

(part of DirectX 9.0b SDK) for viewing and manipulating 2D and volume DDS files, 

Adobe’s Photoshop for image editing, NVIDIA’s DDS plugin for Photoshop, 

the custom-made tool “Make Some Noise” to augment the process of noise texture 

generation, and Troll Tech’s Qt. 

B. DESIGN DESCRIPTION 

1. Overview 
The presentation of the whole hierarchical structure of the Delta3D simulation 

engine is beyond the scope of this thesis, but the classes relevant to this research must be 

discussed. The three pertinent classes are the EnvEffect class, the Environment class and 

the Weather class. EnvEffect is a base class for any environmental effect class, so 

CloudPlane and CloudDome classes inherit from it (Figure 3).  

 

 

Figure 3.   Class Hierarchy 
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Environment maintains a list of effects and any new effect must be registered to 

this list in order to be rendered. Multiple instances of CloudPlane can be added to the 

Environment to represent layers of clouds, although only one instance of CloudDome can 

exist at a time. Normally, the two classes are used interchangeably but not both at the 

same time. Developers can embody the required functionality by using either of the two 

for rendering clouds depending on each application’s needs.  

The Environment class provides a mechanism for the registered environmental 

effects to be updated at runtime by passing variables such as skyColor, fogColor, and 

sunAngle in the Repaint. This update happens every second but if an EnvEffect needs to 

be updated for every frame, it is possible to register the System class as a Message Sender 

and obtain the deltaFrameTime, which is the time passed from frame to frame. 

2. NoiseGenerator Class 
The NoiseGenerator class is used to create procedural 2D and 3D gradient lattice 

noise textures for use by the other two classes CloudPlane and CloudDome. The 

algorithm of the noise function is based on Ken Perlin's improved Noise [3]. This 

improved algorithm reduced the grid-oriented artifacts by introducing a small set of fixed 

gradient directions and replaced the cubic interpolation of fade function with a fifth order 

polynomial to eliminate discontinuities of second and third order derivatives. This 

implementation was written in Java and had to be ported to C++.  

Additional extensions added were the support for 2D noise and the extremely 

important property of wrapping in every axis that produced tileable 2D and 3D noise. The 

texture is created by direct manipulation of the image data segment through extensive use 

of pointers. Also, the three most frequently used functions in the noise generation process 

(fade, lerp and grad) were inlined to improve performance. 

The user can parameterize the following inputs of the NoiseGenerator class 

constructor: 

• Octaves of noise 

• Initial Frequency 

• Initial Amplitude 
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• Persistence 

• Texture dimensions ( Width, Height, Slices=Depth ) 

The end user, by tweaking these parameters, can create an infinite number of 

noise textures. For example, Figure 4 has two sample 2D and one 3D noise textures. The 

left texture of the two 2D textures has six octaves, initial frequency=6, initial 

amplitude=0.7 and persistence=0.5, while the right has four octaves, initial frequency=3, 

initial amplitude=1 and persistence=0.3 

 

    
Figure 4.   Samples of 2D and 3D Noise Textures 

 

The resulting texture is seamless the same texture is arranged side-by-side in 

every direction. For example in Figure 5 shows the middle texture tiled four times. 

 
Figure 5.   Tiled Pattern 
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This property was achieved by passing the frequency parameter to the noise 

function and apply the modulo operator (%) to the integer parts of the coordinates x, y 

and z. This operator provides the remainder of the division of two numbers and has the 

useful property of wrapping when applied in a sequence of numbers. For example, 

assume the frequency is 5. When the modulo operator is applied to a series of integer 

numbers and the frequency, it will yield: 

1%5 0.2 , 2%5 0.4 , 3%5 0.6 , 4%5 0.8 , 5%5 0 , 6%5 0.2= = = = = =  

The random numbers that initialize the permutation array are created with the 

reseed function, which uses rand and as seed, the machine time to avoid any similarities 

in subsequent calls. 

The available pixel formats are ALPHA, LUMINANCE, RGB or RGBA. The 

most efficient formats are ALPHA and LUMINANCE because they use only one byte 

per pixel. In other words, if a texture is stored in ALPHA format, it requires ¼ of 

memory and storage space than the same texture stored in RGBA format. Besides, no 

information is lost because the texture stored in RGBA format is grayscale. Of course, 

later the texture stored in ALPHA format must be subjected to special treatment because 

this channel is not normally visible. 

Another solution to reduce the size of the textures, especially the volume ones, 

was to use a compression technique. OpenGL 1.3 and later versions provide native 

support for texture compression. The compression format is dependent on the 

implementation of the driver but if the extension GL_EXT_texture_compression_s3tc is 

present in the system, the S3TC_DXT formats could be used. The caveat using one of 

these compression formats is that they are not lossless. After doing some experimentation 

with compressed noise textures, it was concluded that the visual fidelity of the rendering 

was unacceptable. 

Although the produced textures appear as controlled random noise, they need to 

be processed to have a cloud-like appearance. Two different techniques were used for the  
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two cloud classes, respectively, which are described in the appropriate sections. In 

general, the pixel values of the texture must be clamped to create patches of clouds and 

then exponentiated to decrease the dynamic range. 

 

 
Figure 6.   3D Texture Structure 

 

One feature worth mentioning is how the 3D textures are created. OpenGL 

version 1.2 and later versions support 3D textures, which essentially are a series of 

regular 2D textures. The interesting characteristic of 3D textures is that when they are 

applied to an object with proper texture coordinates, the graphics hardware interpolate 

between the 2D texture slices. The interpolation method, which is the same with 

individual 2D textures, controls the final image quality. 

3. CloudPlane Class 

a. Overview 
The CloudPlane class is registered with the Delta3D framework by 

inheriting from the EnvEffect class. It is used to create layers of clouds above the 3d 

world of the simulation. This is achieved by creating pseudo-infinite planes (quads with 

very large dimensions), which are properly tessellated and textured to give the impression 

of clouds. These planes must be “fixed” above the viewer, which is achieved by inserting 

their nodes as children of a transform node (MoveEarthySkyWithEyePointTransform) that 

automatically translates them to the viewer point coordinates. 
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b. Noise Texture 

The NoiseGenerator class is used to create the required 2D noise texture, 

which is subsequently processed to generate the cloud-like texture. The four necessary 

parameters for creating the noise texture (noise octaves, initial frequency, initial 

amplitude and persistence) are passed to the NoiseGenerator class along with the 

required dimensions of the texture. The dimensions should be equal in each direction and 

should be a power of 2. The recommended value for width and height is 512x512 since 

lower values do not produce visually acceptable results and higher values take much 

more time to be computed. Further required processing of generated noise texture is 

clamping and exponentiation, which will produce noise textures with cloud-like 

appearance and is described in detail in the section entitled “Post-Process of Noise 

Textures”.  

The texture mipmaps are set to be generated automatically with the 

function call mTexture setUseHardwareMipMapGeneration(true). The minification and 

magni-fication texture filtering is set to LINEAR_MIPMAP_LINEAR in order to obtain 

the smoothest antialiasing possible. In addition, when associating the color and normal 

arrays with the geometry, the binding mode for the array of colors is set to 

BIND_PER_VERTEX and for the normals is set to BIND_OVERALL.   

It is necessary to allow the sky to be seen through the cloud layers and this 

is achieved by using a blending equation with source and destination factors 

SRC_ALPHA and ONE_MINUS_SRC_ALPHA, respectively. Since the generated 

texture has only the ALPHA channel available, the blending is automatic. The only 

restriction that exists is that the layers should be added in a lower-to-upper order because, 

otherwise, they will not be rendered correctly. This is a limitation of OpenGL 

transparency management and it is not possible to circumvent it using only the fixed 

graphics pipeline model. 

The initial approach of assigning a single quad as a cloud layer was not 

successful due to the problem of hard edges near the horizon. Dividing the quad in nine 

segments and setting appropriate values for the vertices ALPHA values solved this 

problem.  The outer vertices have ALPHA equal to zero, while the four inner vertices 
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have ALPHA equal to one. Later in the rasterization phase in the pipeline, the 

intermediate pixels between the outer and inner edges will be assigned the interpolated 

ALPHA value between zero and one. This ALPHA value combined with the ALPHA 

value of the applied 2D noise texture will provide the final ALPHA value that will be 

written in the color frame buffer. Figure 7 shows a representation of the discussed 

method. The numbers indicate the segment divisions. Figure 8 demonstrates a 

comparison between a regular four-vertex quad and one that uses the tessellated version. 

It is apparent how the tessellated quad allows for smooth edges in the horizon. 

 

 
Figure 7.   Tessellated CloudPlane Quad  

 

  
Figure 8.   CloudPlanes with Hard Edges and Soft, ALPHA Enabled, Edges 

 

The textures are applied on the quads with texture coordinates that are 

modified at runtime to give the impression of wind because the clouds appear as though 

they are moving. This is achieved with the mWind parameter (an osg::Vec2 instance), 
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that modifies each layer texture coordinates relative to their height from the ground. 

Every cloud layer has a user-defined height (mHeight) above the ground, which impacts 

the effect that wind has on it. The closer to the ground the layer is, the greater its speed so 

as to give the impression that what is seen in real life are low-height fast-moving clouds. 

c. Update 
Two methods were followed to change the various parameters of the cloud 

layers. The first method implements the virtual function EnvEffect::Repaint(). This 

function is required to be implemented by all classes that inherit from EnvEffect and is 

called automatically by the Environment class every second. The following Environment 

parameters are updated: sky_color, fog_color, sun_angle, sun_azimuth and visibility. By 

using these values, it is straightforward to compute the updated cloud layer color 

(mCloudColor), and along with the fog_color, to determine the final color of the inner out 

outer vertices of the quad. Then, these colors are updated with the call 

mPlane setColorArray(mColors). 

The second method is to subscribe the CloudPlane class to receive 

messages from the dtCore::System class with the AddSender(System::GetSystem()) call. 

Any message that System sends will be received in the CloudPlane::OnMessage() 

method1. In particular, the two messages of interest are “preframe” and “postframe”, 

which contain the deltaFrameTime value that denotes the time that passed from one 

frame of the simulation to the other. 

Although the value deltaFrameTime was not needed in this class,  the 

second method was used for updating the texture coordinates of the quad because the 

Repaint function of the first method is not called every frame and a “choppy” appearance 

in the cloud layers appeared. 

4. CloudDome Class 

a. Overview 
The CloudDome class is also registered with the Delta3D framework by 

inheriting from the EnvEffect class. It renders clouds on a dome-shaped (hemispherical 

structure) cloud surface around the 3D world by direct manipulation of a run-time or pre-
                                                 

1 The mechanism that supports the messaging system relies on the Sig-Slot architecture. 
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computed procedural volume texture in the GPU. Both pre-computed and run-time 

volume noise textures are being generated by the NoiseGenerator class. The texture is 

updated through vertex and fragment shaders written in the OpenGL Shading Language 

at runtime with use of user-defined uniform variables either programmatically or with a 

GUI applet. 

b. Dome 
The dome 3D object is constructed by a series of triangle strips with the 

arrangement to have larger density where the alpha transition occurs in order to be 

smoother. This is achieved by setting the angles from the bottom up to appropriate 

values: the strip altitude increments are 0°, 4°, 5° and 5° with corresponding alpha values 

for the vertices at that levels 0, 0.3, 0.7 and 1.0 (Figure 9). The actual colors of the dome 

vertices are bright red, green and blue but normally they are not active in the simulation 

because they are used only for debugging purposes when the shaders are inactive. The 

number of levels used is seven while the number of segments is twenty. 

 
Figure 9.   Cloud Dome 

 

The dome radius is variable and must be smaller than the radius of the 

SkyDome that renders the rest of the sky. Again, the dome must be “fixed” above the 

viewer and this is achieved by using the MoveEarthySkyWithEyePointTransform 

transform node, which automatically translates the dome to the viewer point coordinates 

and the color binding is set to BIND_PER_VERTEX  
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c. Noise Texture 

After creating the dome, a volume noise texture that will be applied onto it 

must be created. There are two ways to acquire the texture: either by loading the texture 

off the hard disk or generating it at runtime. If the supplied filename parameter is not 

correct or the file cannot be found, the texture is again generated at runtime. The image 

file format is DDS and has only pixel information in the ALPHA channel to keep the size 

relatively small. If the volume texture has to be generated, the NoiseGenerator class is 

instantiated and the parameters for the texture generation are: six octaves of noise, initial 

frequency 6, initial amplitude 0.7 and persistence 0.5. A warning message is displayed in 

the console to state that the supplied file name could not be loaded. 

The default resolution of the volume texture is 1283, which is a reasonable 

compromise between graphics memory requirements and visual appearance. Most new 

graphics cards have a maximum volume texture resolution of 5123, but this would be 

filling up valuable space on the graphics card memory and would take too much time to 

be generated at runtime.  

Currently, the DDS file format does not support volume texture mipmaps 

and, therefore, the texture minification and magnification filtering for the 3D textures is 

set to LINEAR. In addition, the utility OpenGL function that auto-generates mipmaps for 

volume textures (gluBuild3DMipMapLevels), either was not implemented or fully 

supported by all OpenGL drivers. It was, consequently, not used. 

d. Shaders 
Apart from the system graphics card capabilities, some ARB extensions 

must be present in order for GLSL to be supported. These are 

GL_ARB_fragment_shader, GL_ARB_vertex_shader, GL_ARB_shader_objects and 

GL_ARB_shading_language100.  GLSL is currently supported in OSG through its core 

component osgGL2. In order to activate the shaders, which will render the clouds on the 

dome, some steps must be followed. GLSL introduces vertex and fragment shader 

objects, which contain the data structures necessary for storing the OpenGL shader. 

Shader objects must attach to a program object, which is an OpenGL-managed data 

structure and acts as a container for them. The shader source files must loaded into the 
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vertex and fragment shader objects, compiled by the OpenGL driver and linked. Then, 

the executable machine code is installed on the vertex and fragment processor where they 

will be used to render all subsequent primitives (Figure 10). 

There are two shader source files: vertex source file“cloud1.vert” and 

fragment source “cloud1.frag”. The shader source code could have been embedded in the 

CloudDome class, but having it as two separate shader files enables debugging and future 

modification without recompiling the application source file.  

 

 
 

Figure 10.   Execution Model for OpenGL Shaders (From: OpenGL Shading Language 
Book) 

 

Communication between the application and either the vertex and 

fragment processor is performed by passing uniform variables to the vertex and fragment 

shaders. Uniform variables do not change across the primitive being processed and they 

are used as a link between the shader, OpenGL and the application. User-defined uniform 

variables are used by the application to pass arbitrary data values to the shaders, which 

allows for shader parameterization and provides greater control to the end-user. The most 
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important property of using uniform variables is that by modifying them at run-time, 

either programmatically or through a graphical user interface, realizes a variety of effects 

from only one shader. The cloud vertex and fragment shaders are using uniform variables 

to control object scale, cloud color, texture offset, color bias and other parameters. With 

this parameterized design, the end-user can easily visualize many different cloud textures 

with run-time parameter modification.  

The cloud vertex shader is simple enough to create as it has only four 

functions to perform: 

• Accepts the position of vertices in object space 

• Scales the object according to a uniform variable Scale 

• Transforms the position from object space to clip space and stores it to the 
gl_position built-in varying variable 

• Passes the user-defined varying variable ModelPosition to the fragment 
shader 

 

 
Figure 11.   The Cloud Vertex Shader Source File 

 

The Scale uniform parameter is used originally for optimally scaling the 

object in relationship to the size of the noise texture, but also allows for finer control of 

the size of clouds. The ModelPosition varying variable is used for making the scaled 
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incoming vertex value available to the fragment shader. This would be the modeling 

coordinate of the object at every fragment and it is used as the input for the 3D noise 

texture lookup. The vertex transformation is achieved by using the built-in GLSL 

function ftransform, which “ensures that the incoming vertex position is transformed in a 

way that produces exactly the same result as would be produced if OpenGL’s fixed 

functionality transform”. [1] 

The cloud fragment shader is where the noise volume texture is used to 

render clouds on the dome. It does the following: 

• Accepts the user-defined varying variable ModelPosition from the vertex 
shader 

• Makes the 3D texture lookup for the alpha value using the scaled model 
position as texture coordinates in addition to the Offset variable 

• Performs the noise clamping and exponentiation using the Cutoff and 
Exponent variables, which is discussed in more detail in the “Post-Process 
Noise” section 

• Biases the noise alpha value 

• Computes the final fragment, color mixing the CloudColor color variable, 
noise alpha and vertex alpha 
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Figure 12.   The Cloud Fragment Shader Source File 

 

For each incoming fragment, the cloud fragment shader computes its color 

by writing this value into the special output variable gl_FragColor. For determining the 

final fragment color, the red, green and blue channel information of the CloudColor color 

variable is taken and combined with the vertex alpha value, which has been transmitted 

internally from the vertex shader and modulated by the already computed noise alpha 

variable. The results of the fragment shader are then sent on for further processing. 
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Figure 13.   Fragment Color Computation 

 

The remainder of the OpenGL pipeline remains the same. Fragments are 

submitted to coverage application, pixel ownership testing, scissor testing, alpha testing, 

stencil testing, depth testing, blending, dithering, logical operations, and masking before 

ultimately being written into the frame buffer. The only operation used beyond the 

fragment processor in this application (CloudDome::Create function) is blending. The 

gl_FragColor final cloud color value must be blended with the sky. The source and 

destination factors used are SRC_ALPHA and ONE_MINUS_SRC_ALPHA, 

respectively. 

To simulate procedural clouds that are forming, disappearing and drifting 

across the sky, instead of using only the scaled dome position as the index (texture 

coordinates) into the 3D noise texture, an offset value is added. This offset is defined as a 

uniform variable (Offset) and can be updated by the application each frame. The clouds 

can drift slowly by modifying the x component of this uniform variable while the cloud 

forming is controlled with the y component. To achieve a more complex effect, both 

coordinates can be modified each frame. 

e. Update 
All user-defined uniform variables are initialized in the application and 

updated with the second method described in the CloudPlane class. CloudDome class 

registers to receive messages from the dtCore::System class with the 

CloudDome::OnMessage( ) method. By altering the values of Exponent and Cutoff 
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variables, the user can control the clamping and exponentiation process in real-time. 

Similar control is attainable with CloudColor, Bias and Offset uniform variables. All 

these variables are defined as private data members in the class but they have their get( ) 

and set( ) methods that allow access and modification.  

C. SUPPLEMENTARY RESEARCH 

1. Post-Process of Noise Textures 
2D noise textures generated with NoiseGenerator must be clamped and 

exponentiated. This parameterized process will produce noise textures with a cloud-like 

appearance. The pixel depth of the texture is eight bits because it only has the alpha 

channel available. Originally, these alpha values vary between 0 and 255 (or 0 to 1 in 

OpenGL format), which are all possible values of a 1-byte data type. The user chooses 

the cutoff and density values that will be used in the clamping and exponentiation 

process. 

The two functions can be combined in a two-leg function. If alpha is the original 

alpha value of a pixel in the texture, it is modified as follows: 

• If alpha < cutoff  alpha = 0 

• If alpha > cutoff  alpha = 1 - densityalpha-cutoff 

This modification has the effect of shrinking the dynamic range of the texture and 

altering the transitions at the cloud edges. Figure 14 shows some sample curves 

representing the output alpha values when processed with some typical values of density 

and cutoff.  
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Figure 14.   Noise Clamping and Exponentiation Equation 

 

The curve with density equal to 0.99 and cutoff equal to 0.3 will give the effect of 

a near-filled sky with smoothed cloud edges and a very narrow dynamic range, while the 

one with density equal to 0.95 and cutoff equal to 0.7 will generate a texture with sparse 

clouds and hard edges. 
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Figure 15.   Exponentiation Effects on Noise Texture  

 

It is obvious that with various combinations of these two parameters along with 

the modification of the original parameters of the noise function (octaves, initial 

frequency, initial amplitude and persistence), a nearly endless variety of cloud-like 

textures can be produced. These textures were generated in volatile memory and they had 

to be stored to some permanent storage media, such as a hard disk, using an appropriate 

image file format. The problem faced was that not many image file formats are available 

that support volume textures.  

2. DDS File Format 
The generated 2D and volume noise textures were stored as DDS (DirectDraw 

Surface) files. This file format is created by Microsoft and is used to store 2D and volume 

textures and cubic environment maps, both with and without mipmap levels. This format 

can also store uncompressed and compressed pixel formats, and is the preferred file 

format for storing DXT compressed data. This file format is supported by Microsoft with 

the DirectX Texture tool (DXTex Tool) and also by NVIDIA, which has provided several 

useful tools such as nvdext, a DDS import plugin for Photoshop and a DDS thumbnail 

viewer for Windows 2000/XP. 
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The internal format in which OSG stores images (osg::Image) is a thin 

encapsulation of the OpenGL image data structure. The way OSG supports different 

image file formats for importing and exporting images is via the Reader-Writer plugin 

mechanism.  Plugins allow users to write code to read arbitrary file types and convert 

them into native formats.  The plugin architecture also allows users to create a writer 

mechanism that converts internal format images into arbitrary files types. As of May 

2004, some formats were available for exporting 2D images (*.rgb, *.sgi, *.bmp, *.jpg 

and *.pnm), but most had only Readers and none could export volume textures. This 

limitation was important because it was not possible to store the NoiseGenerator volume 

noise textures to hard disk, which led to the development of the missing necessary 

support in OSG’s DDS plugin: volume image file import and export and 2D image file 

export. 

Figure 16 shows the DDS file layout. Its parts are: 

• A value at the file header used to identify the file as the DDS format 

• A “Surface Format Header” that contains all the information needed to 
determine the contents of the entire file. 

• A “Main Surface Data” area that contains the actual image data (pixel 
values according to the pixel format: RGB, ALPHA, LUMINOSITY, etc.) 

• An “Attached Surfaces Data” area that stores additional image data for 
mipmaps or cubemaps 

 

 
Figure 16.   Structure of the DDS Image File Format 
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The DDSURFACEDESC2 structure contained in the surface format header 

describes the file contents using the standard flags and values defined in the Microsoft 

DirectDraw documentation. For example, for a volume texture to be written to disk, 

among other things, the following DDSURFACEDESC2 structure flags must be set: 

• ddsd.dwFlags       |= DDSD_DEPTH 

• ddsCaps.dwCaps   |= DDSCAPS_COMPLEX 

• ddsCaps.dwCaps2 |= DDSCAPS2_VOLUME 

The modifications to the DDS plugin were accepted and included in the OSG 

open-source repository. 

3. “Make Some Noise” Tool 

One problem encountered was how to find the correct values that would create the 

textures envisioned. Figure 17 shows the initial approach. 

 

 
Figure 17.   Noise Texture Creation Process 

 

This highly iterative and time-consuming process had to be more efficient. A GUI 

tool was created with Troll Tech’s Qt v.3.2.1(Non-commercial version) that helped to 

streamline the process and freely tweak any parameter obtaining immediate visual results. 

Also, the “Save” function to 2D or 3D DDS files was a method to store interesting 

textures to the hard disk and use them in the CloudPlane and CloudDome classes. 

A modified version of NoiseGenerator class was used with some additional 

functionality: 

• Option to generate textures as RAW image data instead of only 
osg::Image textures 

• Included exponentiation function 
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These changes rendered the NoiseGenerator class OSG agnostic and suitable for a 

broader range of applications. Additionally, the following features justified the choice of 

Qt as the GUI builder instead of other toolkits: 

• Excellent portability of the code in Linux and Macintosh platforms 

• Complete help system 

• Tight integration with Microsoft Visual Studio 

• Specialized tools for rapid code development 

Figures 18 and 19 show the tool ported to the Mac OSX (Panther) and Fedora 

Core 2 Linux distribution, respectively. 

 

 
Figure 18.   “Make Some Noise” Tool Ported to Mac OSX 

 

With this tool, the process of choosing the correct values for the noise parameters 

was now straightforward. Ample textures, which represent various conditions of cloud 

coverage, density, and texture, can be generated and stored for later use.  
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Figure 19.   “Make Some Noise” Tool Ported to Linux (Fedora) 

 
4. Shader Development 

The development of shaders in a high-level shading language such as GLSL or Cg 

require many trials and iterations because these languages are still new and their features, 

power and weaknesses are not yet fully understood. Additionally, programming the 

graphics hardware requires precise knowledge of the way it replaces the fixed pipeline, 

what actions are allowed at every stage and which underlying hardware will be targeted. 

Moreover, during the development of shaders, there is no feedback where logic errors 

exist and the debugging is very limited.       

These difficulties can be addressed by using new tools created for shaders 

development. One is ATI’s Shader IDE RenderMonkey in which the cloud vertex and 

fragment shaders were created. When first introduced, it was available only for the HLSL 

and Cg languages, but the 1.5 version supports GLSL as well. This application is freely 

distributed and simplifies shader creation by providing an integrated environment for 

editing and compiling shaders, loading textures, creating varying and uniform variables 

and providing instant visual feedback. Also, it is an excellent tool for prototyping and 
 33



debugging new graphics algorithms. In addition, it is possible to define multiple passes 

for the fragment shaders if the underlying graphics hardware cannot support loops or 

control structures in them.   

Figure 20 is a screenshot of the RenderMonkey application. All windows can be 

customized and positioned at will. Typically, on the left side, there is a tree structure of 

the workspace where the user can define uniform variables, textures, render states, 

camera objects and models to apply the shaders. In the “Artist Editor” window, there are 

sliders by which the user can modify the uniform variables. In the Output window, 

messages can be viewed from the compiling and linking process, along with other run-

time messages. The vertex and fragment shader source files can be edited with syntax-

highlighted formatting in the Shader Editor window. A Preview window is available to 

monitor the effects that shaders have in the loaded 3d models. 

Shader development time is reduced dramatically using this IDE as workspaces 

can be templated, saved and reused. Using the GLSL shaders in the OpenGL application 

is straightforward.  The user simply needs to set the render states and define the textures 

and uniform variables.    

Other available non-commercial IDEs for shaders are NVIDIA’s FX Composer, 

which support Cg and HLSL, and TyphoonLabs’ Shader Designer, which supports 

GLSL.  
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Figure 20.   ATI’s RenderMonkey IDE 
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IV. CLOUD SIMULATION IMPLEMENTATION 

A. DELTA3D INTEGRATIONS 
The NoiseGenerator, CloudPlane and CloudDome classes have been integrated in 

the Delta3D simulation engine and can be used by any application needs more realism in 

outdoor scenes. A simple test application has been created to exhibit the capabilities of 

these classes and serve as one of the demonstrations for the MOVES Open House 2004. 

Performance measurements have been conducted with the Fraps benchmark tool to 

evaluate the performance penalty that cloud rendering imposes on the test application. 

1. CloudPlane 
Creating layers of clouds inside a simulation with the CloudPlane class is very 

simple. One or more layers can be rendered with the constraint that the order of the layers 

is from the furthest to the closest due to OpenGL transparency and blend function 

management. The declaration of a layer is as follows: 

 
dtCore::CloudPlane *cloudPlane;  
 
or if OSG referenced pointers is used 
 
osg::ref_ptr<dtCore::CloudPlane> cloudPlane; 
 

Each layer must be instantiated passing parameters to the constructor that defines 

the characteristics of the cloud plane: noise parameters (octaves, cutoff, frequency, 

amplitude, persistence, density and texture size), height from the ground and optionally 

name. 

 
cloudPlane = new dtCore::CloudPlane(octaves, cutoff, frequency, 
amplitude, persistence, density, texSize, height, “Low layer”); 
 

Then each cloud layer must be added to the Environment, as all EnvEffects are 

required in order to be populated in a list and rendered correctly. A handle to a Weather 

instance is necessary since the Environment instance is, by aggregation, included in 

Weather:  

 

 37
weather->GetEnvironment()->AddEffect(cloudPlane); 



Multiple layers can be added to the Environment with the same procedure, which 

in turn must be added as a Drawable to the main dtABC::Application: 

 
application->AddDrawable(weather->GetEnvironment()); 
 

In the sample test application testClouds, an array of three elements was 

initialized with the following three cloud layers of different characteristics: 

 
osg::ref_ptr<dtCore::CloudPlane> cloudPlane[3]; 
// Overcast sky with clouds 
cloudPlane[0]=new dtCore::CloudPlane(10, .6, 3, .5, .7, .95, 1024, 1400); 
// Broken clouds 
cloudPlane[1]=new dtCore::CloudPlane(10, .7, 6,  1, .4, .96, 1024, 1200); 
// Few Clouds 
cloudPlane[2]=new dtCore::CloudPlane(8,  .8, 16, .8, .4, .96, 1024, 900); 
 

These are added from the furthest (1400 units) to the closest (900 units) with 

decreasing cloud covering area (Cutoff increasing from 0.6 to 0.8) and increasing 

frequency to render small clouds at the bottom layer. The textures of the layers could be 

any power of 2 resolution depending on the application. A typical resolution is 512x512 

pixels, while 1024x1024 could be used for smoother textures and 256x256 when there are 

memory constraints. These three 1024x1024 layers require 3 Mb of graphics memory, 

which is within limits of most graphics cards. If all four channels (RGBA) had been used 

for the textures, the required memory would have been 12 Mb, so the choice of using 

only an alpha channel texture saves 8 Mb of memory in this particular occasion. 

Generally, the memory requirements for only alpha channel textures are ¼ of the regular 

RGBA textures.  

The translation of the texture coordinates of the quads relative to their height from 

the x-y plane, along with the addition of a terrain model, augments depth perception of 

the scene. The terrain is constructed by means of the dtCore::InfiniteTerrain class, and 

this scene was the “test bed” on which the cloud classes were tested. The following 

screenshots in Figures 21, 22 and 23 represent each CloudPlane layer, with the 

parameters mentioned earlier: “Overcast sky”, “Broken clouds”, “Few Clouds”. Layers 

can be combined and rendered one on top of the other as shown in Figure 24 where layers 

2 and 3 have been combined. 
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Figure 21.   Overcast Sky 

 

 
Figure 22.   Broken Clouds 
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Figure 23.   Few Clouds 

 

 
Figure 24.   Combined 2nd and 3rd Layers 
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The cloud layers are shaded according to the time of day and appear different 

shades according to their height from the x-y plane. Due to the loose tessellation of the 

cloud quads, the color is uniform across the inner vertices. This feature, in addition to the 

built-in color model of the sky, adds realism and visual appeal to the simulation. If fog 

has been added to the scene, setting the respective OpenGL fog state fogs the cloud layers 

as well individually. Figure 25 shows a scene at dusk: 

 

 
Figure 25.   Clouds with CloudPlanes at Dusk  

 
2. CloudDome 

In order for a system to use OpenGL shaders, it must fulfill two prerequisites: a 

capable graphics card and OpenGL drivers that support GLSL. The declaration of the 

second cloud rendering class, CloudDome, is no different from the CloudPlane: 

 
dtCore::CloudDome *cloudDome;  
or if OSG referenced pointer is used 
osg::ref_ptr<dtCore::CloudDome> cloudDome; 
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There are two ways to define the 3D noise texture used by the CloudDome class: 

either by directly loading a pre-computed 3D noise texture or by computing one at 

runtime. The same noise parameters (octaves, cutoff, frequency, amplitude, persistence 

and density) as in the CloudPlane class are required, except from the texture size, which 

is fixed to 128x128x128. Additionally, two extra parameters should be provided: one that 

represents the radius of the dome and one for the segments of the circumference of the 

dome. Consequently, there are two constructors that can handle these two cases.  

 
cloudDome = new dtCore::CloudDome(octaves, cutoff, frequency, 
amplitude, persistence, density, radius, segments); 
 

The second constructor only requires these two parameters and the DDS filename 

of the pre computed 3D noise texture:  

 
cloudDome = new dtCore::CloudDome(radius, segments, <filename>); 
 

These two constructors can be used interchangeably but only one is allowed in 

any application. The second form is faster in loading time but it requires a texture.  An 

example of a CloudDome instantiation can be found in the “Cloud Simulation” demo in 

which the 3D texture is computed on the fly. The following constructor has been used: 

 
cloudDome = new dtCore::CloudDome(6, 2, .7, .5, .7, 5, 5500, 20); 
 

The CloudDome instance must be added to the Environment in order to be 

included in the EnvEffect list and rendered correctly.  

 
weather->GetEnvironment()->AddEffect(cloudDome.get()); 
 

Again, the Environment must be added as a Drawable to the main 

dtABC::Application: 

 
application->AddDrawable(weather->GetEnvironment()); 
 

The values of all the uniform variables of the shaders can be conveniently 

modified after an CloudDome object is constructed by using their respective setter 
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functions: setScale( ), setExponent( ), setCutoff( ), setSpeedX( ), setSpeedY( ), setBias( ), 

setCloudColor( ). Changing these variables has the effect of real-time alteration of the 

cloud appearance. Furthermore, combining values into themes can be helpful for storing 

certain cloud appearances for later use.     

For the needs of the “Cloud Simulation”, the FLTK applet, which was described 

in a previous section, was used to modify these values by user-interaction and non-

programmatically.  

 

 
Figure 26.   CloudDome Screenshot 1 
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Figure 27.   CloudDome Screenshot 2  

 

 
Figure 28.   CloudDome Screenshot 3  
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3. FLTK GUI 

The CloudDome shaders can be previewed with the use of a GUI applet in which 

the user has access to all parameters (uniform variables) of the shaders. This applet is 

created with a FLTK User Interface Designer (fluid), which Delta3D had already been 

using as a GUI for testing other types of classes. The Offset variable is replaced by X 

speed and Y speed variables, which denote the horizontal and vertical cloud speed. The 

user is given the capability to change every aspect of the clouds appearance effortlessly 

and instantly observe the results. Also, the applet provides the option to disable the 

shaders completely and enable back the OpenGL fixed functionality for debugging, 

performance benchmarking or other reasons. 

 

 
Figure 29.   FLTK GUI Applet for CloudDome 

 

For example, the screenshots in Figures 29 and 30 are from the same static scene 

and show the “forming” of clouds by simply altering the uniform parameter Cutoff via the 

FLTK GUI.  
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Figure 30.   Cutoff Equal to 0.85 and 0.78 

 

  
Figure 31.   Cutoff Equal to 0.72 and 0.61 

 
4. Performance 

In order to evaluate the performance of CloudPlane and CloudDome classes, the 

frames per second of the “Cloud Simulation” have been measured before and after the 

use of any cloud rendering method. All the measurements have been conducted on a 

system with the following characteristics: 

• Processor: Intel Pentium 4 HT, 2.933 Mhz 

• Motherboard: MSI 865PE, 1Gb RAM 

• Video Adapter: ATI All-in-Wonder 9600 (128 Mb), Catalyst drivers v. 4.7 

• Display Mode: 1280x1024 with 32 bits per pixel, Refresh rate: 100Hz 

• Operating System: Microsoft Windows XP with SP1 
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The tool used for the measurements was Fraps v.2.0. The Vsync property was 

disabled in order to avoid artificial capping of the FPS due to the graphics card and 

monitor synchronization. This decision was taken because Delta3D itself does not have 



an internal limit that would have prevent applications from rendering faster than a certain 

frame rate. In other words, the maximum frame rate that the application can obtain will 

not be limited by the refresh rate of the monitor. During the measurements, all 

unnecessary processes and applications were shutdown and the simulation executed in 

full screen. Finally, the Windows XP internal limit for OpenGL applications (60 FPS) 

was disabled. 

The results, which are presented in Table 1, show that overall, there is a drop in 

the frame rate as expected, but this drop is not always significant. Specifically, the frame 

rate when one CloudPlane was activated had a drop of 15%. The maximum frame drop 

occurred when CloudDome was activated where a drop of 47% made the actual FPS 

equal to 44. Even then, it was still greater than the minimum 30 FPS required for correct 

animation perception. 

These findings prove that that the addition of cloud rendering techniques has 

some adverse performance effects on the application, however, these natural effects can 

be rendered at real-time in mainstream graphics cards.  

 
Sky State Frames Per Second Drop (%) 

Empty sky 83 - 

One CloudPlane 70 15 

Two CloudPlanes 62 25 

Three CloudPlanes 59 29 

CloudDome 44 47 
 

Table 1. Application FPS Changes with the Addition of Clouds 
 
B. LINUX PORT 

At the time of this writing, the Delta3D simulation engine had been developed 

only for Microsoft Windows platforms, but the goal is to be available for other platforms 

as well. As far as the Linux platform is concerned, plenty of non-commercial Linux 

distributions are suitable for developing any kind of large-scale applications including 

virtual environment simulations. Both major graphics cards vendors (ATI & NVIDIA) 
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are maintaining up-to-date Linux OpenGL drivers along with support for OpenGL 

shaders. In addition, the main underlying framework on which Delta3D is based, OSG, 

can be natively built on Linux machines.  

Most Delta3D simulation engine components have been ported to Fedora Core 2 

Linux distribution as the final portion of this thesis. In order for the “Cloud Simulation” 

to be able to execute correctly in this platform, some modifications in the source code 

were necessary. The most important modifications were: 

• Several class name conflicts had to be resolved 

• Strict filename and code case (uppercase and lowercase letters) had to be 
enforced 

• Some alternate standard C++ library function definitions had been 
provided 

• Recompilation of all of the dependencies of Delta3D under Linux (FLTK, 
pLib, InterSense, tinyXML, ReplicantBody, Cal3D, ODE and 
OpenThreads, Producer and OpenSceneGraph) 

The resulting code had similar or better performance compared to that of the 

Windows platforms. The actual MOVES Open House “Cloud Simulation” application 

was demonstrated on a Linux machine. 
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V. CONCLUSIONS – FUTURE WORK 

A. SUMMARY 
This thesis designed and implemented a simulation component that renders clouds 

using procedural noise-based texturing techniques. Two modeling approaches were used. 

In the first method, procedural textures representing cloud layers were mapped onto 

elevated quads that were properly tessellated. The second method employed OpenGL 

Shading Language to update the position and other characteristics of a 3D procedural 

texture mapped onto a dome dynamically. Both methods create convincing clouds when 

used in interactive outdoor simulations while the performance penalty imposed is 

considered acceptable. 

The 2D and 3D noise textures used in both methods were created having a 

seamless tiling property so that their edges would not be noticeable. Additionally, 3D 

texture read/write support was built for the DDS file format plugin of OpenSceneGraph 

in order to store the textures for later use. A custom GUI tool, “Make Some Noise”, has 

also been built to help with the efficient creation and storing of 2D and 3D textures 

through parameterization. 

In addition, cross-platform compatibility was demonstrated by porting the Cloud 

Simulation to Fedora Linux. Lastly, the cloud simulation component was included in the 

Delta3D simulation engine and was used in demonstrations during MOVES 2004 Open 

House.  

B. FUTURE WORK 
Future work should focus on expanding the capabilities of the current cloud 

simulation component concerning the visual detail and quality and volumetric support but 

also on developing support for the simulation of other natural phenomena such as rain, 

haze, snow, and lighting. 

1. Clouds 
The visual detail of cloud simulation could be improved by developing a more 

sophisticated shader algorithm that could not only modify texture coordinates and texture 

exponentiation, but also create turbulent flows and swirls in the clouds. In addition, one 
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restriction of the current cloud simulation component is that it limits the viewpoint 

around the ground level. This limitation could be removed if the volumetric cloud 

modeling approach was followed. This approach is recommended for simulations that 

demand flight in and around clouds. 

Presently, the shading of clouds allow only for one color due to the nature of the 

texture mapping technique used. A new shading model could be developed for greater 

realism of the cloud simulation during dawn and dusk hours that could give clouds self-

shadows and color variation.  

2. Other Natural Phenomena 
The inclusion of models of various other natural phenomena such as rain, snow, 

and haze in outdoor simulations greatly enhances realism and fidelity. Especially in 

training applications, the representation of various weather conditions is often necessary. 

A library of such phenomena could be built in the Delta3D simulation engine using 

shaders or traditional rendering techniques. For example, rain could be modeled as 

antialiased, blurred lines rendered on a screen-aligned rectangle. The lines could be 

slanted according to the viewpoint speed. 

The possibilities are endless with the number of effects that could be modeled and 

included in the simulation engine. When the graphics hardware matures further, it should 

be possible to generate these natural phenomena on-demand at runtime without a 

significant drop in performance. 
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APPENDIX GLOSSARY 

2D Two dimensional 

3D Three dimensional 

Mipmap Texture maps of decreasing resolutions used to 

antialise texture map primitives 

Vertex A point in three-dimensional space 

Fragment The set of data that is generated by rasterization and 

represents the information necessary to update a 

single frame buffer location 

Shader Source code written in a shading language that is 

intended to executed in the vertex and fragment 

processors 

FPS Frames per Second 

GUI Graphical User Interface 
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